Concept Drift Detection Through Resampling

نویسندگان

  • Maayan Harel
  • Shie Mannor
  • Ran El-Yaniv
  • Koby Crammer
چکیده

Detecting changes in data-streams is an important part of enhancing learning quality in dynamic environments. We devise a procedure for detecting concept drifts in data-streams that relies on analyzing the empirical loss of learning algorithms. Our method is based on obtaining statistics from the loss distribution by reusing the data multiple times via resampling. We present theoretical guarantees for the proposed procedure based on the stability of the underlying learning algorithms. Experimental results show that the method has high recall and precision, and performs well in the presence of noise.

منابع مشابه

Concept drift detection in business process logs using deep learning

Process mining provides a bridge between process modeling and analysis on the one hand and data mining on the other hand. Process mining aims at discovering, monitoring, and improving real processes by extracting knowledge from event logs. However, as most business processes change over time (e.g. the effects of new legislation, seasonal effects and etc.), traditional process mining techniques ...

متن کامل

Concept drift detection in event logs using statistical information of variants

In recent years, business process management (BPM) has been highly regarded as an improvement in the efficiency and effectiveness of organizations. Extracting and analyzing information on business processes is an important part of this structure. But these processes are not sustainable over time and may change for a variety of reasons, such as the environment and human resources. These changes ...

متن کامل

The Gradual Resampling Ensemble for mining imbalanced data streams with concept drift

Knowledge extraction from data streams has received increasing interest in recent years. However, most of the existing studies assume that the class distribution of data streams is relatively balanced. The reaction of concept drifts is more difficult if a data stream is class imbalanced. Current oversampling methods generally selectively absorb the previously received minority examples into the...

متن کامل

Self-Adaptive Ensemble Classifier for Handling Complex Concept Drift

In increasing number of real world applications, data are presented as streams that may evolve over time and this is known by concept drift. Handling concept drift through ensemble classifiers has received a great interest in last decades. The success of these ensemble methods relies on their diversity. Accordingly, various diversity techniques can be used like block-based data, weighting-data ...

متن کامل

Towards Online Concept Drift Detection with Feature Selection for Data Stream Classification

Data Streams are unbounded, sequential data instances that are generated very rapidly. The storage, querying and mining of such rapid flows of data is computationally very challenging. Data Stream Mining (DSM) is concerned with the mining of such data streams in real-time using techniques that require only one pass through the data. DSM techniques need to be adaptive to reflect changes of the p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014